Quintessence International
Login:
username:

password:

Plattform:

Forgotten password?

Registration

Quintessence Int 49 (2018), No. 1     20. Dec. 2017
Quintessence Int 49 (2018), No. 1  (20.12.2017)

Page 9-15, doi:10.3290/j.qi.a39402


Digital evaluation of the fit of zirconia-reinforced lithium silicate crowns with a new three-dimensional approach
Zimmermann, Moritz / Valcanaia, Andre / Neiva, Gisele / Mehl, Albert / Fasbinder, Dennis
Objective: Several methods for the evaluation of fit of computer-aided design/computer-assisted manufacture (CAD/CAM)-fabricated restorations have been described. In the study, digital models were recorded with an intraoral scanning device and were measured using a new three-dimensional (3D) computer technique to evaluate restoration internal fit. The aim of the study was to evaluate the internal adaptation and fit of chairside CAD/CAM-fabricated zirconia-reinforced lithium silicate ceramic crowns fabricated with different post-milling protocols. The null hypothesis was that different post-milling protocols did not influence the fitting accuracy of zirconia-reinforced lithium silicate restorations.
Method and Materials: A master all-ceramic crown preparation was completed on a maxillary right first molar on a typodont. Twenty zirconia-reinforced lithium silicate ceramic crowns (Celtra Duo, Dentsply Sirona) were designed and milled using a chairside CAD/CAM system (CEREC Omnicam, Dentsply Sirona). The 20 crowns were randomly divided into two groups based on post-milling protocols: no manipulation after milling (Group MI) and oven fired-glazing after milling (Group FG). A 3D computer method was used to evaluate the internal adaptation of the crowns. This was based on a subtractive analysis of a digital scan of the crown preparation and a digital scan of the thickness of the cement space over the crown preparation as recorded by a polyvinylsiloxane (PVS) impression material. The preparation scan and PVS scan were matched in 3D and a 3D difference analysis was performed with a software program (OraCheck, Cyfex). Three areas of internal adaptation and fit were selected for analysis: margin (MA), axial wall (AX), and occlusal surface (OC). Statistical analysis was performed using 80% percentile and one-way ANOVA with post-hoc Scheffé test (P = .05).
Results: The closest internal adaptation of the crowns was measured at the axial wall with 102.0 ± 11.7 µm for group MI-AX and 106.3 ± 29.3 µm for group FG-AX. The largest internal adaptation of the crowns was measured for the occlusal surface with 258.9 ± 39.2 µm for group MI-OC and 260.6 ± 55.0 µm for group FG-OC. No statistically significant differences were found for the post-milling protocols (P > .05). The 3D difference pattern was visually analyzed for each area with a color-coded scheme.
Conclusion: Post-milling processing did not affect the internal adaptation of zirconia-reinforced lithium silicate crowns fabricated with a chairside CAD/CAM technique. The new 3D computer technique for the evaluation of fit of restorations may be highly promising and has the opportunity to be applied to clinical studies.

Keywords: CAD/CAM, Celtra Duo, Cerec, marginal fit, internal fit, intraoral scanning, zirconia-reinforced lithium silicate ceramic
fulltext (no access granted) order article as PDF-file (20.00 €)